

Features

- Input voltage range: 3.6V ~ 28V
- Low on-resistance for IN-OUT: typical 40mΩ
- Over voltage protection: Default 6V
- Super-fast OVP response time: typical 50ns
- Programmable Over Current Protection
- Output Discharge
- Short Circuit Protection
- Tiny 6-bumps WLCSP 1.17mm x 0.815mm

Applications

• Smart Phone, AR/VR Device, Tablet PC, Wearable etc.

General Description

YHM2012 is a low $40m\Omega$ (TYP) on-resistance high current integrated MOSFET load switch which actively protect low-voltage systems against voltage supply faults up to +28VDC. An input voltage exceeding the overvoltage threshold will cause the internal MOSFET to turn off, preventing excessive voltage from damaging downstream devices.

The over-voltage protection threshold is default 6V. There are other trim versions for 11V/16V/22V OVP and no OVP. YHM2012 device enters constant current mode when the output load exceeds the over current threshold. The over current threshold is programed by R_{SNS} .

YHM2012 is available in tiny 6-bumps WLCSP 1.17mm x 0.815mm, 0.4mm pitch, and operates over an ambient temperature range of -40° C to $+85^{\circ}$ C.

Typical Application

Fig 1. Load switch with OCP/SCP/Current sense Application Diagram

Internal Block Diagram

YHM2012 Pin Configurations

Fig 3. YHM2012 WLP-6 Pin Assignment (Top Through View)

YHM2012 WLP Pin Descriptions

Bump	Name	Description			
A1	IN	Power Input.			
A2	EN	Chip enable.			
A3	ISNS	Resistor connected to program OCP threshold.			
B1	OUT	Power Output.			
B2	PWR	Aux power from VIN for 20mA load.			
B3	GND	Device Ground.			

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
VIN	IN to GND	-0.3	29	V	
Vout	OUT to GND		-0.3	V _{IN} +0.3	V
VISNS	ISNS to GND		-0.3	6.0	V
l _{in}	Input Current (Continuous)			2.2	Α
lout	OUT Current		2.2	А	
IPWR	PWR Current		20	mA	
t _{PD}	Total Power Dissipation at $T_A = 25^{\circ}C$	-	TBD	W	
T _{STG}	Storage Temperature Range	-65	+150	°C	
TJ	Maximum Junction Temperature		+150	°C	
ΤL	Lead Temperature (Soldering, 10 Seconds)		+260	°C	
	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012 PWR Pins				
ESD		All Pins	± 6.5		kV
	Charged Device Model, JESD22-C101	±1			

Note 1. Refer to JEDEC JESD51-7, use a 4-layerboard

1. Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance.

Parameters	Min.	Max.	Unit
Supply Voltage: V _{IN}	3.6	28	V
Other Pin	1.6	5.5	V
Ambient Operating Temperature, T _A	-40	85	°C
VIN Capacitor	0.1		μF
Vout Load Capacitor	1	100	μF
Operating Temperature Range	-40	85	°C

2. Detailed Electrical Characteristics

 V_{IN} = 3.6V to 28V, C_{IN} = 0.1µF, T_A = -40°C to +85°C, typical values are at V_{IN} = 5V, I_{IN} ≤ 3A, T_A = +25°C, unless otherwise noted.

PARAMETER	SYMBO	CONDITION	MIN	TYP	MAX	UNIT
INPUT OPERATION		AV.				
Input Voltage Range	VIN		3.6		28	V
Input Quiescent Current IINQ VIN = 5V, E		$V_{IN} = 5V$, EN=High		53		μA
Shutdown Current	I _{OFF}	V _{IN} = 5V, EN=Low		40		μA
Under-Voltage Lockout	Vin_uvlo	V _{IN} falling		3.5		V
Under-Voltage Lockout Hysteresis	VIN_HYS	0		0.1		V
OVER-VOLTAGE PROTECTI	ON	5				
OUT OVLO threshold	VIN_OUT_ OVLO	V _{IN} rising		6		V
OUT Switch On-Resistance	Ron1	V _{IN} = 5V, I _{OUT} = 0.5A, T _A = +25°C		40		mΩ
OVER-CURRENT PROTECTI	ON					
OCP Threshold	IOCP	$R_{SNS}=5.4k\Omega$, $T_A=25^{\circ}C$		1		Α
	IOCP	Accuracy, $T_A = 0^{\circ}C$ to +65°C	-10%		10%	
OCP Response Time	tocp			45		us
OCP Auto-restart Time	tocp_rst			100		ms
TIMING CHARACTERISTICS						
Debounce Time	t _{DEB}	De-bounce Time for start rising		3		ms
Switch Turn-On Time	t _{ON1}	$\label{eq:VIN} \begin{split} V_{IN} = 5V, R_L = 100\Omega, C_{LOAD} = 100uF, V_{OUT} \\ from 0.1 \times V_{IN} \ to \ 0.9 \times V_{IN} \end{split}$	907 3			ms
Switch Turn-Off Time	t _{OFF1}	$V_{IN} > V_{IN_OVLO}$ to $V_{OUT} = 0.8 \times V_{IN}$, R _L = 100 Ω , V _{IN} rising at 2V/µs		50		ns
LOGIC	<u> </u>					
EN High Threshold Voltage	V _{EN_H}		0.6			V
EN Low Threshold Voltage	V _{EN-L}				0.3	V
THERMAL SHUTDOWN						

Thermal Shutdown		150	°C
Thermal Shutdown Hysteresis		15	°C

Note 1: This parameter is guaranteed by design and characterization; not production tested.

HMILCROS CONFELDENTING

4. Detailed Description

4.1 General Introduction

YHM2012 is a low $40m\Omega$ (TYP) on-resistance high current integrated MOSFET load switch which actively protect lowvoltage systems against voltage supply faults up to +28VDC. An input voltage exceeding the over-voltage threshold will cause the internal MOSFET to turn off, preventing excessive voltage from damaging downstream devices.

The over-voltage protection threshold is default 6V. There are other trim versions for 11V/16V//22V OVP and no OVP. YHM2012 device enters constant current mode when the output load exceeds the over current threshold. The over current threshold is programed by R_{SNS}.

4.2 UVLO (Under-Voltage Lockout)

The device has a built-in under-voltage lockout (UVLO) circuit. When VIN is falling, the output remains connected from the input until IN voltage is below 3.5V (TYP). This circuit has a 100mV hysteresis to provide noise immunity to transient conditions.

4.3 OVLO (Over-Voltage Lockout)

When the voltage at the input exceeds OVLO threshold, the device immediately turns off the internal switch disconnecting the load from the abnormal voltage, preventing damage to downstream components. The over-voltage protection threshold is default 22V. There are other OTP versions for 6V/11V/16V OVP and no OVP.

4.4 OCP (Over Current Protection)

The chip enters constant current mode when the output load exceeds the over current threshold. The OCP threshold could be adjusted by single external resister R_{SNS} connected between ISNS and GND.

R_{SNS} = 2.7K/ I_{OCP}

Connect an ADC to ISNS pin to measure the voltage on R_{SNS} can get the current flow through the switch. The output current can be determined by ISNS pin voltage using the following equation:

$$I_{OUT} = V_{ISNS} \times 9000/R_{SNS}$$

4.5 Aux Power

The chip features an aux power for standby MCU even the chip is off by pull EN to ground. The PWR is the same voltage as input power and only supply 20mA current. If the input voltage exceeds 5.8V, PWR output if off.

4.6 Thermal Protection

The internal FET turns off when the junction temperature exceeds +150°C (TYP). The device exits thermal shutdown after the junction temperature cools down by 15°C (TYP).

Package Dimensions

WLCSP-6 1.17mm x 0.815mm x 0.574mm

Ordering Information

	Part Number	Temp Range	Pin Package	Top Mark	MOQ
١	/HM2012W6T	-40°C to 85°C	6 WLCSP	YWW LOT	3000

T = Tape and reel.

YWW: Date Code. Y = year, WW = week. LOT: The last three number of LOTID.

HIMI CROS