

Features

- Input voltage range: 2.5V ~ 28V
- Both IN and ISNS may supply the chip
- Low Quiescent current: 20uA
- Low on-resistance: typical 120mΩ
- Programmable Over Current Protection
- 10Mbps bit rate communication
- Output Discharge
- Thermal Shutdown
- Robust ESD capability HBM > ±6500V CDM > ±2000V
- 2mm x 2mm 8-pin DFN

Applications

Consumer, IOT, Industrial.

General Description

YHM2019B over current protection device features a low $120m\Omega$ (TYP) on-resistance integrated MOSFET which actively protect over current condition.

YHM2019B device enters hiccup mode when the output load exceeds the over current threshold. The over current threshold is programed by R_{SNS} .

The device also features 10Mbps bit rate and it supports digital signal communication when the chip is powered by ISNS pin.

YHM2019B is available in 2mm x 2mm 8-pin DFN with 0.5 pitch, and operates over an ambient temperature range of -40°C to +85°C.

Typical Application

Internal Block Diagram

Fig 1. High Voltage OCP Switch Application Diagram

Fig 2. YHM2019B Functional Block Diagram

Pin Configurations

Fig 4. YHM2019B DFN-8 Pin Assignment (Top Through View)

YHM2019B DFN Pin Descriptions

Bump	Name	Description
1	IN	Power Input.
2	GND	Device Ground.
3	NC	Floating or connect to ground.
4	NC	Floating or connect to ground.
5	NC	Floating or connect to ground.
6	NC	Floating or connect to ground.
7	ISNS	Resistor connected to program over current threshold. Or connect to >1.6V GPIO for communication function.
8	OUT	Power Output.

1. Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

VIN IN to GND -0.3 29 V Vourr OUT to GND -0.3 VIN+0.3 V VISNS ISNS to GND -0.3 6.0 V Input Current (Continuous) -0.3 6.0 V Iour Output Current (Continuous) 2.0 A Iour Output Current 2.0 A Tsrc Storage Temperature Range -65 +150 °C T_ Maximum Junction Temperature +150 °C °C T_ Lead Temperature (Soldering, 10 Seconds) +260 °C °C ØJA Thermal Resistance, Junction-to-Ambient (1-in. Pad of 2-oz. Copper) TBD °C/V ESD Human Body Model, ANSI/ESDA/JEDEC JS-001-2012 All Pins 6.5 kV Charged Device Model, JESD22-C101 All Pins 2.0 A	Symbol	Parameter	Min.	Max.	Unit	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VIN	IN to GND		-0.3	29	V
$ \begin{array}{ c c c c c } \hline I_{IN} & Input Current (Continuous) & 2.0 & A \\ \hline I_{OUT} & Output Current & 2.0 & A \\ \hline T_{STG} & Storage Temperature Range & -65 & +150 & ^{\circ}C \\ \hline T_J & Maximum Junction Temperature & -65 & +150 & ^{\circ}C \\ \hline T_L & Lead Temperature (Soldering, 10 Seconds) & +260 & ^{\circ}C \\ \hline \theta_{JA} & Thermal Resistance, Junction-to-Ambient (1-in. Pad of 2-oz. Copper) & TBD & ^{\circ}C/V \\ \hline ESD & Human Body Model, ANSI/ESDA/JEDEC JS-001-2012 & All Pins & 6.5 & KV \\ \hline Charged Device Model, JESD22-C101 & All Pins & 2.0 & \\ \hline \end{array} $	Vout	OUT to GND		-0.3	V _{IN} +0.3	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VISNS	ISNS to GND		-0.3	6.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{IN}	Input Current (Continuous)			2.0	А
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{OUT}	Output Current			2.0	А
TL Lead Temperature (Soldering, 10 Seconds) +260 °C θJA Thermal Resistance, Junction-to-Ambient (1-in. Pad of 2-oz. Copper) TBD °C/V ESD Human Body Model, ANSI/ESDA/JEDEC JS-001-2012 All Pins 6.5 kV Charged Device Model, JESD22-C101 All Pins 2.0	T _{STG}	Storage Temperature Range		-65	+150	°C
θ _{JA} Thermal Resistance, Junction-to-Ambient (1-in. Pad of 2-oz. Copper) TBD °C/V ESD Human Body Model, ANSI/ESDA/JEDEC JS-001-2012 All Pins 6.5 kV Charged Device Model, JESD22-C101 All Pins 2.0 1	ТJ	Maximum Junction Temperature			+150	°C
ESD Human Body Model, ANSI/ESDA/JEDEC JS-001-2012 All Pins 6.5 Charged Device Model, JESD22-C101 All Pins 2.0	ΤL	Lead Temperature (Soldering, 10 Seconds)	< </td <td></td> <td>+260</td> <td>°C</td>		+260	°C
Charged Device Model, JESD22-C101 All Pins 2.0	θја	Thermal Resistance, Junction-to-Ambient (1-in. Pad of 2-oz.	Copper)		TBD	°C/W
Charged Device Model, JESD22-C101 All Pins 2.0	ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins	6.5		kV
Note 1. Refer to JEDEC JESD51-7, use a 4-layerboard		Charged Device Model, JESD22-C101	2.0			

2. Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance.

Parameters	Min.	Max.	Unit
Supply Voltage: V _{IN}	2.5	28	V
Supply Voltage: VISNS	1.6	5.5	V
Ambient Operating Temperature, T _A	-40	85	°C
VIN Capacitor (No capacitor for communication function)	0.1		μF
Vout Load Capacitor (No capacitor for communication function)	1	100	μF
Operating Temperature Range	-40	85	°C

3. Detailed Electrical Characteristics

 V_{IN} = 2.5V to 28V, C_{IN} = 0.1µF, T_A = -40°C to +85°C, typical values are at V_{IN} = 5V, $I_{IN} \le$ 2A, T_A = +25°C, unless otherwise noted.

PARAMETER SYMBO CONDITION		MIN	TYP	MAX	UNIT	
INPUT OPERATION						
Input Voltage Range	VIN		2.5		28	V
Input Supply Current	linq	V _{IN} = 5V, ISNS Floating		20		μA
Under-Voltage Lockout	VIN_UVLO	V _{IN} rising		2.35		V
Under-Voltage Lockout Hysteresis	V _{IN_HYS}	0		0.1		V
Switch On-Resistance	R _{ON}	V _{IN} = 5V, I _{OUT} = 0.2A, T _A = 25°C		120		mΩ
ISNS Supply Current		V _{ISNS} = 1.8V		15		μA
OVER-CURRENT PROTECTIO	ON N	\sim				
OCP Threshold	last	Rsns=25KΩ, T _A = 25°C		1		А
OCP Threshold	Іоср	Accuracy, $T_A = 0^{\circ}C$ to +65°C	-10%		10%	
OCP Response Time	tocp			45		us
OCP Auto-restart Time	tocp_rst			130		ms
TIMING CHARACTERISTICS		·				
Debounce Time	t _{DEB}	Time from $V_{IN} > V_{IN_UVLO}$ to the time V_{OUT} starts rising		10		ms
Switch Turn-On Time	ton	$\label{eq:VIN} \begin{split} V_{IN} = 5V, R_L = 100\Omega, C_{LOAD} = 100uF, V_{OUT} \\ from 0.1 \times V_{IN} \ to \ 0.9 \times V_{IN} \end{split}$		0.5		ms
Switch Turn-Off Time toFF		$V_{IN} > V_{IN_OVLO}$ to $V_{OUT} = 0.1 \times V_{IN}$, R _L = 100 Ω , V _{IN} rising at 2V/µs		50		ns
THERMAL SHUTDOWN ⁽¹⁾						
Thermal Shutdown				150		°C
Thermal Shutdown Hysteresis				20		°C

Note 1: This parameter is guaranteed by design and characterization; not production tested.

4. Detailed Description

4.1 General Introduction

YHM2019B over current protection device features a low $120m\Omega$ (TYP) on-resistance integrated MOSFET which actively protect over current condition.

YHM2019B device enters hiccup mode when the output load exceeds the over current threshold. The over current threshold is programed by R_{SNS}.

4.2 UVLO (Under-Voltage Lockout)

The device has a built-in under-voltage lockout (UVLO) circuit. When VIN is rising, the output remains disconnected from the input until IN voltage is above 2.35V (TYP). This circuit has a 100mV hysteresis to provide noise immunity to transient conditions.

4.3 OCP (Over Current Protection)

The chip enters hiccup mode when the output load exceeds the over current threshold. The OCP threshold could be adjusted by single external resister R_{SNS} connected between ISNS and GND using the following equations:

 $R_{SNS} = 25 K / I_{OCP}$

Connect an ADC to ISNS pin to measure the voltage on R_{SNS} can get the current flow through the switch. When the output is short to ground, the chip limit the short current to protect the system from damage.

4.4 Communication Functionality

Both IN and ISNS may supply YHM2019B. YHM2019B would compare the voltage between IN and ISNS, and select the higher voltage to power the IC. By this, YHM2019B supports digital signal transmission through IN and OUT when the device is powered by ISNS. Typically, ISNS is recommended to be driven by GPIO typically. For example, $V_{ISNS} = 1.8V$ would power YHM2019B even when $V_{IN} = 0$. It is necessary to remove input and output capacitor when communication is required.

Fig 6. Timing for VIN communication

4.6 Thermal Protection

The internal FET turns off when the junction temperature exceeds +150°C (TYP). The device exits thermal shutdown after the junction temperature cools down by 20°C (TYP).

Package Dimensions

DFN-8 2mm x 2mm x 0.55mm

Ordering Information

Part Number	Temp Range	Pin Package	OVP Threshold	Top Mark	MOQ
YHM2019BD8T	-40°C to 85°C	8 DFN	NO	2019B YYWW	4000

Top Mark

Y2019: YHM2019B YYWW: Date Code. YY = year, WW = week.

Email Requests to: <u>SALES@YHMICROS.COM</u> Micros Website: <u>WWW.YHMICROS.COM</u>